The second order cohomology and cyclic cohomology groups of some commutative semigroup algebra

Hussein M. GHLAIO

Department of Mathematics, Faculty of Science, Misurata University *Corresponding author: H.Ghlaio@sci.misuratau.edu.ly

Submission data: 16. 5. 2023 Acceptance data: 28. 6. 2023 Electronic publisher data: 16. 8. 2023

Abstract: In this paper, we shall reformulate the second order cohomology and cyclic cohomology groups of some commutative semigroup algebras.

Keywords: semigroup, cohomology and cyclic cohomology groups, semigroup algebra.

Introduction:

Let A be a Banach algebra and let X be a Banach A - bimodule, in particular for $X =$ A^* is a Banach A - bimodule, which is called the dual module of $\mathcal A$, and also $\mathcal A^*$ is a unitlinked bimodule when A is unital.

In their article [2], H. G. Dales and J. Duncan established some nice results about $\mathcal{H}^2(\mathcal{A}, X)$, where $\mathcal{A} = \ell^1(S)$, the semigroup algebra of *S* for some certain semigroups S such as $S = \mathbb{Z}_+$. Indeed, it was proved that $\mathcal{H}^2(\mathcal{A}, \mathcal{A}^*) = \{0\}$ for $\mathcal{A} =$ $\ell^1(S)$ where $S = \mathbb{Z}_+$.

In [3], F. Gourdeau, A. Pourabbas, and M. White investigated the second–order cohomology group of certain semigroup algebras. They proved that $\mathcal{H}^2(\ell^1(S^1), \ell^1(S^1)^*)$ is a Banach space whenever S^1 is any Rees semigroup with identity adjoined.

Let S be the semigroup $T_n =$ $\{e, a, a^2, ..., a^{n-1}, a^n = 0\}$ for $n \in \mathbb{N}$ with $n \geq 2$. We use *e* for the identity of *S* We note that T_n is finite, commutative, 0-cancellative, nil [#]-semigroup which was introduced in [4].

From now on we fix the notation A_n for the semigroup algebra $\ell^1(T_n)$. In this paper we shall reformulate the second order cohomology and cyclic cohomology groups $\mathcal{H}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ and $\mathcal{HC}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ for the semigroup algebra A_n .

In the next three sections, we recommend the reader to follow [1] for more information.

2 Cohomology of algebras

Let $\mathcal A$ be an algebra, and let X be an $\mathcal A$ bimodule. For $n \in \mathbb{N}$, recall that an *n*-linear map $T: \mathcal{A}^n \to X$ is an *n*-cochain and that $\mathcal{L}^n(\mathcal{A}, X)$ is the space of *n*-linear maps from $\mathcal{A} \times \cdots \times \mathcal{A}$ to X.

Definition 2.1 *Let* $n \in \mathbb{N}$ *. We define the map* δ^{n} : $\mathcal{L}^{n}(\mathcal{A}, X) \to \mathcal{L}^{n+1}(\mathcal{A}, X)$ by the *formula*

$$
(\delta^{n}T)(a_{1},...,a_{n+1}) = a_{1} \cdot T(a_{2},...,a_{n+1})
$$

$$
+ \sum_{k=1}^{n} (-1)^{k} T(a_{1},...,a_{k-1},a_{k}a_{k+1},...,a_{n+1})
$$

$$
+ (-1)^{n+1} T(a_{1},...,a_{n}) \cdot a_{n+1},
$$

$$
(2.1)
$$

where $a_1, ..., a_{n+1} \in \mathcal{A}$ and $T \in \mathcal{L}^n(\mathcal{A}, X)$. We also define $\delta^0: X \to \mathcal{L}(\mathcal{A}, X)$ by $\delta^0(x) =$ δ_{r} $(x \in X)$.

Take $n \in \mathbb{N}$. Clearly $\delta^n T \in \mathcal{L}^{n+1}(\mathcal{A}, X)$ for each $T \in L^n(\mathcal{A}, X)$ and each δ^n is linear. It can be seen by a tedious calculations that $\delta^{n+1} \circ \delta^n = 0$ for all $n \in \mathbb{N}$. An *n*-cochain T is an *n*-*cocycle* if $\delta^n T = 0$, and T is an *ncoboundary* if there is a linear map $Q \in$ $\mathcal{L}^{n-1}(\mathcal{A}, X)$ such that $T = \delta^{n-1}Q$. The linear space of all n -cocycles is denoted by $Z^{n}(\mathcal{A}, X)$, and the linear space of all ncoboundaries is denoted by $N^{n}(\mathcal{A}, X)$. Since $\delta^{n} \circ \delta^{n-1} = 0$ for all $n \in \mathbb{N}$, the space $N^{n}(\mathcal{A}, X)$ is a subspace of $Z^{n}(\mathcal{A}, X)$.

Definition 2.2 *The n*th-cohomology group of *with coefficients in is defined by*

$$
H^{n}(\mathcal{A},X)=Z^{n}(\mathcal{A},X)/N^{n}(\mathcal{A},X).
$$

In the additional case where $n = 0$, we set

$$
Z^{0}(\mathcal{A}, X) = \ker \delta^{0}
$$

= {x \in X: a \cdot x = x \cdot a \quad (a
\in \mathcal{A})}

and $H^0(\mathcal{A}, X) = Z^0(\mathcal{A}, X)$.

Given $T \in Z^n(\mathcal{A}, X)$, we shall sometimes write [T] for the element of $H^n(\mathcal{A}, X)$ determined by T .

For example, a linear map $D \in \mathcal{L}(\mathcal{A}, X)$ is 1cocycle if and only if it is a derivation and a 1 coboundary if and only if it is inner.

A map $T \in L^2(\mathcal{A}, X)$ is a 2-*cocycle* if and only if it satisfies the equation

$$
a \cdot T(b,c) - T(ab,c) + T(a,bc) - T(a,b) \cdot c = 0 \quad (a,b,c \in \mathcal{A}) \cdot (2.2)
$$

Now take a map $Q \in \mathcal{L}(\mathcal{A}, X)$. Then

$$
(\delta^{1}Q)(x,y) = x \cdot Q(y) - Q(xy) + Q(x) \cdot y \quad (x, y \in \mathcal{A}), \quad (2.3)
$$

Clearly $\delta^1 Q \in L^2(\mathcal{A}, X)$. Each such bilinear map $\delta^1 Q$ is easily checked to be a 2-cocycle.

3 Cohomology of Banach algebras

Let A be a Banach algebra, and let X be a Banach A-bimodule. For $T \in \mathcal{B}^n(\mathcal{A}, X)$, we have ${}^nT \in \mathcal{B}^{n+1}(\mathcal{A}, X)$ and $\delta^n : \mathcal{B}^n(\mathcal{A}, X) \to \mathcal{B}^{n+1}(\mathcal{A}, X)$ is a continuous linear map.

An *n*-cochain *T* is a *continuous n*-*coboundary* if there is a bounded linear map $0 \in$ $B^{n}(\mathcal{A}, X)$ such that $T = \delta^{n} Q$. The linear space of all continuous n -cocycles is denoted by $\mathcal{Z}^n(\mathcal{A}, X)$, and linear space of all continuous n -coboundaries is denoted by $\mathcal{N}^n(\mathcal{A}, X)$. Clearly $\mathcal{Z}^n(\mathcal{A}, X)$ is a closed subspace of $\mathcal{B}^n(\mathcal{A}, X)$ and $\mathcal{N}^n(\mathcal{A}, X)$ is a subspace of $\mathcal{Z}^n(\mathcal{A}, X)$; it is not necessarily closed.

Definition 3.1 *Let A be a Banach algebra, and let be a Banach -bimodule. Then the* ℎ *-cohomology group of with coefficients in is defined by*

$$
\mathcal{H}^{n}(\mathcal{A},X)=Z^{n}(\mathcal{A},X)/\mathcal{N}^{n}(\mathcal{A},X).
$$

The space $\mathcal{H}^{n}(\mathcal{A}, X)$ is a semi-normed space for the quotient seminorm; it is a Banach space whenever $\mathcal{N}^n(\mathcal{A}, X)$ is closed in $\mathcal{B}^n(\mathcal{A}, X)$.

Definition 3.2 *Let be a Banach algebra. A trace on A is an element T of* A^* *such that* $T(ab) = T(ba)$ for all $a, b \in A$. The set of all traces on ${\mathcal A}$ is denoted by ${\mathcal A}^{tr}.$

We set

$$
\mathcal{H}^0(\mathcal{A}, X) = \ker \delta^0 = \{x \in X : a \cdot x = x \cdot a \ (a \in \mathcal{A})\}.
$$

It is clear that

$$
\mathcal{H}^{0}(\mathcal{A}, \mathcal{A}^{*}) = \mathcal{A}^{tr} \quad (3.1)
$$

Remark 3.3 *We recall another notation: we define*

$$
\widetilde{N}^2(\mathcal{A},X)=N^2(\mathcal{A},X)\cap\mathcal{Z}^2(\mathcal{A},X),
$$

and then we define

$$
\widetilde{H}^{2}(\mathcal{A},X)=Z^{2}(\mathcal{A},X)/\widetilde{N}^{2}(\mathcal{A},X).
$$

Thus $H^2(\mathcal{A}, X) = \{0\}$ means that, for each $T \in Z^2(\mathcal{A}, X)$, there exists $Q \in \mathcal{L}(\mathcal{A}, X)$, not necessarily continuous, such that $T =$ $\delta^1 Q$, whereas $\mathcal{H}^2(\mathcal{A}, X) = \{0\}$ means that, for each $T \in \mathbb{Z}^2(\mathcal{A}, X)$ there exists a continuous linear map $Q \in \mathcal{B}(\mathcal{A}, X)$ such that $T = \delta^1 Q$. In contrast, $\widetilde{H}^2(\mathcal{A}, X) = \{0\}$

means that, given $T \in \mathcal{Z}^2(\mathcal{A}, X)$, there exists a linear map $Q \in \mathcal{L}(\mathcal{A}, X)$ such that $T =$ $\delta^1 Q$. In fact the vanishing of the continuous second-order cohomology implies that $\widetilde{H}^2(\mathcal{A}, X) = \{0\}$. In our initial cases, our algebra A will be finite-dimensional, so that there is no difference between $H^2(\mathcal{A}, X)$, ${\mathcal H}^{2}(\mathcal{A},X)$, and $\widetilde{H^{2}}(\mathcal{A},X)$.

4 Cyclic cohomology of Banach algebras

Let A be a Banach algebra, and let A^* be its dual bimodule. Take $n \in \mathbb{N}$. An *n*-cochain $T \in \mathcal{B}^n(\mathcal{A}, \mathcal{A}^*)$ is *cyclic* if it satisfies the equation:

$$
T(a_1, ..., a_n)(a_0) =
$$

$$
(-1)^n T(a_0, a_1, ..., a_{n-1})(a_n) \quad (4.1)
$$

whenever $a_0, a_1, ..., a_n \in \mathcal{A}$.

For example, a linear map $T: A \rightarrow A^*$ is cyclic if $T(b)(a) = (-1)T(a)(b)$ for all $a, b \in \mathcal{A}$; in other words,

$$
\langle a, T(b) \rangle + \langle b, T(a) \rangle = 0 \quad (a, b \in A). \quad (4.2)
$$

In particular,

$$
\langle a, T(a) \rangle = 0 \quad (a \in \mathcal{A}), \quad (4.3)
$$

and this condition is sufficient to ensure that T is cyclic.

A bounded bilinear 2-cochain $T: A \times A \rightarrow$ A^* is cyclic if

$$
\langle a, T(b, c) \rangle = \langle c, T(a, b) \rangle \quad (a, b, c \in \mathcal{A}) \quad (4.4)
$$

The linear space of all cyclic n -cochains is denoted by $\mathcal{CC}^n(\mathcal{A})$ for $n \geq 1$, and we set $\mathcal{CC}^{0}(\mathcal{A}) = \mathcal{A}^{*}$.

It can be seen that the map δ^n maps a cyclic *n*-cochain to a cyclic one for $n \geq 0$ (see for example page 450 in [5]), so that the cyclic n cochains $CC^{n}((\mathcal{A}), \delta^{n})$ form a subcomplex

of $\mathcal{B}^n((\mathcal{A}, \mathcal{A}^*), \delta^n)$ and the *differentials* of this complex or its coboundaries are denoted by

$$
\delta c^n : \mathcal{CC}^n(\mathcal{A}) \to \mathcal{CC}^{n+1}(\mathcal{A})
$$

for $n \geq 0$.

Definition 4.1

The space of all bounded, cyclic -cocycles is denoted by $ZC^{n}(\mathcal{A}, \mathcal{A}^*)$ *, and the subspace consisting of maps* $\delta^{n-1}Q$, where Q is a *bounded, cyclic* $(n - 1)$ *-cocycle, is denoted* by $\mathcal{NC}^{\,n}(\mathcal{A}, \mathcal{A}^*)$. Then the continuous n^{th} *cyclic cohomology group is defined by*

$$
\mathcal{HC}^{n}(\mathcal{A}, \mathcal{A}^*) = Z\mathcal{C}^{n}(\mathcal{A}, \mathcal{A}^*)
$$

$$
/NC^{n}(\mathcal{A}, \mathcal{A}^*).
$$

We take $\mathcal{HC}^{0}(\mathcal{A}, \mathcal{A}^{*})$ to be $\mathcal{H}^{0}(\mathcal{A}, \mathcal{A}^{*})$.

By (3.1), we see that $\mathcal{HC}^{0}(\mathcal{A}, \mathcal{A}^*) = \mathcal{A}^{tr}$.

In particular, the space of all bounded, cyclic derivations from A to A^* is denoted by $Z\mathcal{C}$ ¹(A, A^{*}), and the set of all cyclic inner derivations from A to A^* is denoted by $NC¹(A, A[*])$. It can be seen that every inner derivation is cyclic, and so $\mathcal{NC}^1(\mathcal{A}, \mathcal{A}^*)$ = \mathcal{N} $^{1}(\mathcal{A}, \mathcal{A}^{\ast}% , \mathcal{A}^{\ast})(\theta)$). The *first-order cyclic cohomology group* is defined by

$$
\mathcal{HC}^{1}(\mathcal{A}, \mathcal{A}^{*}) = \mathcal{Z}\mathcal{C}^{1}(\mathcal{A}, \mathcal{A}^{*})
$$

$$
/ \mathcal{NC}^{1}(\mathcal{A}, \mathcal{A}^{*})
$$

$$
= \mathcal{Z}\mathcal{C}^{1}(\mathcal{A}, \mathcal{A}^{*})
$$

$$
/ \mathcal{N}^{1}(\mathcal{A}, \mathcal{A}^{*}).
$$

Again, for example, to say that the secondorder cyclic cohomology, $\mathcal{HC}^2(\mathcal{A}, \mathcal{A}^*)$ = {0}, means that every bounded, cyclic 2 cocycle bilinear map $T: A \times A \rightarrow A^*$ has the form $\delta^1 Q$, where $Q: A \to A^*$ is a bounded linear map such that

$$
\langle a, Q(a) \rangle = 0 \quad (a \in \mathcal{A}) \ .
$$

In the following example, we shall show that $\mathcal{H}^2(\mathcal{A}_n, \mathcal{A}_n^*) \neq \{0\}.$

Example 4.2 *Consider the semigroup* $T_n =$ $\{e, a, a^2, ..., a^{n-1}, a^n = 0\}$. Again, set $A_n =$ $\ell^1(T_n)$, so that $\mathcal{A}_n^* = \ell^\infty(T_n)$.

Take $n = 2$, and define the map $T: A_2 \times$ $\mathcal{A}_2 \rightarrow \mathcal{A}_2^*$ by

$$
\langle \delta_z, T(\delta_x, \delta_y) \rangle =
$$
\n
$$
\begin{cases}\n1 & if x = y = z = a \\
0 & otherwise.\n\end{cases}
$$
\n(4.5)

Then we *claim* that T is a 2-cocycle but not a *2*-coboundary.

First the map T must satisfy the equation:

$$
x \cdot T(y, z) - T(xy, z) + T(x, yz) - T(x, y) \cdot z = 0 \quad (x, y, z \in \mathcal{A}_2). \quad (4.6)
$$

Since $\langle \delta_a, T(\delta_a, \delta_a) \rangle = 1$, we see that $T(\delta_a, \delta_a) = \delta_a^*$ and $T(\delta_p, \delta_q) = 0$ for all other $p, q \in T_2$. We need to prove that

$$
\delta_p \cdot T(\delta_q, \delta_r) - T(\delta_{pq}, \delta_r) +
$$

$$
T(\delta_p, \delta_{qr}) - T(\delta_p, \delta_q) \cdot \delta_r = 0 \quad (4.7)
$$

for all $p, q, r \in T_2$.

All four elements are zero unless at least one of the pairs (q, r) , (pq, r) , (p, qr) , and (p, q) is the pair (a, a) . Thus, there are four cases to be discussed:

Case1: Suppose that $q = r = a$. The L. H. S. of (4.7) will be equal to

$$
\delta_p \cdot \delta_a^* - T(\delta_{pa}, \delta_a) + T(\delta_p, \delta_{a^2}) - T(\delta_p, \delta_a) \cdot \delta_a.
$$

If $p = e$, the first two terms of (4.7) are δ_a^* – δ_{a}^{*} and the last are zero, so (4.7) is satisfied.

If $p = a$, the terms of (4.7) are $\delta_e^* - 0 + 0 \delta^*_e$, so (3.8) is satisfied. Lastly, if $p \neq a$ or e , then all four terms are zero and (4.7) is satisfied.

Case2: Suppose that $pq = r = a$ but $(q, r) \neq$ (a, a) , so that we have $q = e$ and $p = a$. The terms of (4.7) are $\delta_e^* - 0 + 0 - \delta_e^*$, and (4.7) is satisfied.

Case3: Suppose that $p = qr = a$ but $(pq, r) \neq (a, a)$. Then $p = q = a$ and $r = e$. The terms of (4.7) are $\delta_e^*-0+0-\delta_e^*$, so (4.7) is satisfied.

Case4: If $p = q = a$, we can assume that $r \neq$ e or we are in Case3; all four terms of (4.7) are zero unless $r = a$ in which case we are back to Case1. Thus T is a 2-cocycle map.

To prove that T is not a coboundary, suppose that $T = \delta^1 Q$ for some bounded linear map $Q: \mathcal{A}_2 \to \mathcal{A}_2^*$. So from (4.5), we have

$$
0 = T(\delta_o, \delta_o) = \delta^1 Q(\delta_o, \delta_o)
$$

= $\delta_o \cdot Q(\delta_o) - Q(\delta_o)$
+ $Q(\delta_o) \cdot \delta_o$
= $2\delta_o \cdot Q(\delta_o) - Q(\delta_o)$.

However, the map $A_2^* \rightarrow A_2^*$ such that $y \mapsto$ $\delta_o \cdot y$ (sending δ_x^* to 0 if $x \neq o$, and δ_o^* + $\delta_e^* + \delta_a^*$ if $x = o$) does not have $\frac{1}{2}$ as an eigenvalue. The only solution of the equation $2\delta_o \cdot Q(\delta_o) = Q(\delta_o)$ is $Q(\delta_o) = 0$. Thus $Q(\delta_o) = 0$.

Likewise,

$$
0 = T(\delta_o, \delta_a) = \delta^1 Q(\delta_o, \delta_a)
$$

= $\delta_o \cdot Q(\delta_a) - Q(\delta_o)$
+ $Q(\delta_o) \cdot \delta_a = \delta_o \cdot Q(\delta_a)$.

So $\delta_0 \cdot Q(\delta_a) = 0$, in particular $\langle Q(\delta_a), \delta_o \rangle = \langle \delta_o \cdot Q(\delta_a), \delta_o \rangle = 0$

Finally we have

$$
1 = \langle \delta_a, T(\delta_a, \delta_a) \rangle = \langle \delta_a, \delta^1 Q(\delta_a, \delta_a) \rangle
$$

\n
$$
= \langle \delta_a, \delta_a \cdot Q(\delta_a) - Q(\delta_o) \rangle
$$

\n
$$
+ Q(\delta_a) \cdot \delta_a \rangle
$$

\n
$$
= 2 \langle \delta_o, Q(\delta_a) \rangle - \langle \delta_a, Q(\delta_a) \rangle
$$

which is a contradiction. Thus T is not a 2coboundary.

It is interesting to look at the case of this example in general. We define the map $T: \mathcal{A}_n \times \mathcal{A}_n \to \mathcal{A}_n^*$ by

مجلة العلوم

العدد السادس عشر –أغسطس2023- Journal of science, Vol. 16, 2023

$$
T(\delta_p, \delta_q) = \begin{cases} 0 & \text{if } (p, q) \neq (a, a) \\ \delta_a^* & \text{otherwise.} \end{cases}
$$

(4.8)

Then we *claim* that T is a 2-cocycle but T is a 2-coboundary for $n \geq 3$.

The map T is a 2-cocycle because in the following equation:

$$
\delta_p \cdot T(\delta_q, \delta_r) - T(\delta_{pq}, \delta_r) + T(\delta_p, \delta_{qr}) -
$$

\n
$$
T(\delta_p, \delta_q) \cdot \delta_r = 0 \quad (p, q, r \in T_n); \quad (4.9)
$$

\n(3.10)

we see that all four terms in (4.9) , are zero unless at least one of the pairs (q, r) , (pq, r) , (p, qr) , and (p, q) is the pair (a, a) . Thus a similar discussing for the above four cases can be done to prove that T is a 2-cocycle.

To see that T is a 2-coboundary, let's seek a map $Q: \mathcal{A}_n \to \mathcal{A}_n^*$ such that $T = \delta^1 Q$.

From the equation (4.5) , we have

$$
0 = T(\delta_o, \delta_o) = \delta^1 Q(\delta_o, \delta_o)
$$

= $\delta_o \cdot Q(\delta_o) - Q(\delta_o)$
+ $Q(\delta_o) \cdot \delta_o$
= $2\delta_o \cdot Q(\delta_o) - Q(\delta_o)$.

However, the map $\mathcal{A}_n^* \to \mathcal{A}_n^*$ such that $y \mapsto$ $\delta_o \cdot y$ (sending δ_x^* to 0 if $x \neq o$, and δ_o^* + $\delta^*_e + \delta^*_a + \cdots + \delta^*_{a^{n-1}}$ if $x = o$) does not have 1 $\frac{1}{2}$ as an eigenvalue. The only solution of the equation $2\delta_o \cdot Q(\delta_o) = Q(\delta_o)$ is $Q(\delta_o) = 0$. Thus $Q(\delta_o) = 0$.

Also we have

$$
0 = T(\delta_e, \delta_e) = \delta_e \cdot Q(\delta_e) - Q(\delta_e) + Q(\delta_e) \cdot \delta_e = Q(\delta_e), \text{ so } Q(\delta_e) = 0.
$$

Also we have

$$
0 = T(\delta_o, \delta_a) = \delta_o \cdot Q(\delta_a) - Q(\delta_o) +
$$

$$
Q(\delta_o) \cdot \delta_a
$$
, so
$$
\delta_o \cdot Q(\delta_a) = 0
$$
.

Suppose that $Q(\delta_a) = \lambda_0 \delta_e^* + \lambda_1 \delta_a^* + \cdots$ $\lambda_{n-1} \delta_{a^{n-1}}^*$.

We see that

$$
\delta_a^* = T(\delta_a, \delta_a) = 2\delta_a \cdot Q(\delta_a) - Q(\delta_{a^2})
$$

= 2(\lambda_1 \delta_e^* + \lambda_2 \delta_a^* + \cdots
+ \lambda_{n-1} \delta_a^* n-2) - Q(\delta_{a^2}),

hence

$$
Q(\delta_{a^2}) = 2(\lambda_1 \delta_e^* + \lambda_2 \delta_a^* + \dots + \lambda_{n-1} \delta_{a^{n-2}}^*)
$$

$$
- \delta_a^*
$$

$$
= 2\lambda_1 \delta_e^* + (2\lambda_2 - 1)\delta_a^*
$$

$$
+ \dots + 2\lambda_{n-1} \delta_{a^{n-2}}^*.
$$

Similarly, We see that

$$
0 = T(\delta_a, \delta_{a^2}) = \delta_a \cdot Q(\delta_{a^2}) - Q(\delta_{a^3})
$$

+ $Q(\delta_a) \cdot \delta_{a^2}$
= $(2\lambda_2 - 1)\delta_e^* + 2\lambda_3 \delta_a^* + \dots + 2\lambda_{n-1} \delta_{a^{n-3}}^*$
- $Q(\delta_{a^3}) + \lambda_2 \delta_e^* + \lambda_3 \delta_a^* + \dots + \lambda_{n-1} \delta_{a^{n-3}}^*$

hence

$$
Q(\delta_{a^3}) = (3\lambda_2 - 1)\delta_e^* + 3\lambda_3 \delta_a^* + \cdots + 3\lambda_{n-1} \delta_{a^{n-3}}^*.
$$

Also we see that

$$
0 = T(\delta_a, \delta_{a^3}) = \delta_a \cdot Q(\delta_{a^3}) - Q(\delta_{a^4})
$$

+ $Q(\delta_a) \cdot \delta_{a^3}$
= $3\lambda_3 \delta_e^* + 3\lambda_4 \delta_a^* + \dots + 3\lambda_{n-1} \delta_{a^{n-4}}$
- $Q(\delta_{a^4}) + \lambda_3 \delta_e^* + \lambda_4 \delta_a^* + \dots + \lambda_{n-1} \delta_{a^{n-4}}^*$

hence

$$
Q(\delta_{a^4}) = 4(\lambda_3 \delta_e^* + \lambda_4 \delta_a^* + \cdots + \lambda_{n-1} \delta_{a^{n-4}}^*).
$$

A pattern emerge, let's look at the example when $n = 3$ when we know that $Q(\delta_{a^3}) = 0$ so we must have $\lambda_2 = \frac{1}{3}$ $\frac{1}{3}$ and the map T is a 2coboundary for any map $Q: A_3 \rightarrow A_3^*$ such that $T = \delta^1 Q$ and $Q(\delta_o) = Q(\delta_e) = 0$, $Q(\delta_a) = \lambda_o \delta_e^* + \lambda_1 \delta_a^* + \frac{1}{3}$ $\frac{1}{3}\delta_{a^2}^*$, $Q(\delta_{a^2}) =$ $2\lambda_1\delta_e^* - \frac{1}{3}$ $\frac{1}{3}\delta_a^*$ and $Q(\delta_{a^3}) = 0$ where $\lambda_0, \lambda_1 \in$ $\mathbb C$.

Therefore, the map T can not be a counterexample when $n = 3$.

مجلة العلوم

In general, by looking at $Q(\delta_{a^k}) = 0$ for all $k \geq 3$, we must have that $Q(\delta_{a^n}) = 0$; that is $n\lambda_{n-1}\delta_e^* = 0$ so $\lambda_{n-1} = 0$ so that the map T is not a counterexample when $n \geq 3$.

5 The main result

In this section we end with our main result, where we shall reformulate the second order cohomology and cyclic cohomology groups $\mathcal{H}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ and $\mathcal{HC}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ of the commutative semigroup algebra \mathcal{A}_n as defined above.

For $n \in \mathbb{N}$ and from the definition of the map δ^{n} in (2.1), we form the map $\delta^{1} \colon \mathcal{B}^{1}(\mathcal{A}_{n}, \mathcal{A}_{n}^{*}) \to \mathcal{B}^{2}(\mathcal{A}_{n}, \mathcal{A}_{n}^{*})$ such that for each $T: \mathcal{A}_n \to \mathcal{A}_n^*$,

we have

$$
(\delta^{1}T)(a,b) = a \cdot T(b) - T(ab) + T(a)
$$

$$
\cdot b \quad (a,b) \in \mathcal{A}_{n}.
$$

Also, we form the map δ^2 : $\mathcal{B}^2(\mathcal{A}_n, \mathcal{A}_n^*) \to$ $B^3(\mathcal{A}_n, \mathcal{A}_n^*)$ such that for each $T: \mathcal{A}_n \times$ $\mathcal{A}_n \to \mathcal{A}_n^*$, we have

$$
(\delta^{2}T)(a,b,c) = a \cdot T(b,c) - T(ab,c)
$$

+
$$
T(a,bc) - T(a,b)
$$

$$
\cdot c \quad (a,b,c) \in \mathcal{A}_{n}.
$$

It can be shown that $\delta^2 \circ \delta^1 = 0$, so we can reform the second order cohomology $\mathcal{H}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ as the following:

$$
\mathcal{H}^{2}(\mathcal{A}_{n}, \mathcal{A}_{n}^{*}) = \ker \delta^{2} / \mathrm{im} \, \delta^{1}.
$$

The cyclic elements of the space $CC^{-1}(\mathcal{A}_n, \mathcal{A}_n^*)$ are the bounded linear maps $T: \mathcal{A}_n \to \mathcal{A}_n^*$ such that

$$
\langle b, T(a) \rangle = -\langle a, T(b) \rangle \quad (a, b \in \mathcal{A}_n) \, .
$$

Also the cyclic elements of the space $CC^2(\mathcal{A}_n, \mathcal{A}_n^*)$ are the bounded bilinear maps $T: \mathcal{A}_n \times \mathcal{A}_n \to \mathcal{A}_n^*$ such that

$$
\langle c, T(a, b) \rangle = \langle a, T(b, c) \rangle \quad (a, b, c \in \mathcal{A}_n) .
$$

The map δ^1 maps $CC^1(\mathcal{A}_n, \mathcal{A}_n^*)$ into $\mathcal{CC}^{2}(\mathcal{A}_n, \mathcal{A}_n^*)$.

To see that, take $T \in CC^1(\mathcal{A}_n, \mathcal{A}_n^*)$, then for each $a, b, c \in \mathcal{A}_n$, we have

$$
\langle c, T(a,b) \rangle - \langle a, T(b,c) \rangle
$$

= $\langle c, a \cdot T(b) - T(ab) + T(a) \cdot a \rangle$
- $\langle a, b \cdot T(c) - T(bc) + T(b) \cdot c \rangle$

$$
= \langle ca, T(b) \rangle - \langle c, T(ab) \rangle + \langle bc, T(a) \rangle - \langle ab, T(c) \rangle + \langle a, T(bc) \rangle - \langle ca, T(b) \rangle
$$

$$
= (\langle bc, T(a) \rangle + \langle a, T(bc) \rangle) - (\langle c, T(ab) \rangle + \langle ab, T(c) \rangle) = 0.
$$

Therefore, We can reform the second order cyclic cohomology $\mathcal{HC}^2(\mathcal{A}_n, \mathcal{A}_n^*)$ as the following:

$$
\mathcal{HC}^2(\mathcal{A}_n, \mathcal{A}_n^*) = \ker \delta^2
$$

$$
\cap CC^2(\mathcal{A}_n, \mathcal{A}_n^*)
$$

$$
/\delta^1(CC^1(\mathcal{A}_n, \mathcal{A}_n^*)).
$$

Finally, we conclude with our main result as presented in the following theorem:

Theorem 5.1 Let $\mathcal{A}_n = \ell^1(T_n)$, where $n \geq$ 2 *. Then*

$$
\mathcal{H}^{2}(\mathcal{A}_{n}, \mathcal{A}_{n}^{*}) = \ker \delta^{2} / \operatorname{im} \delta^{1}.
$$

and

$$
\mathcal{HC}^2(\mathcal{A}_n, \mathcal{A}_n^*) = \ker \delta^2
$$

$$
\cap CC^2(\mathcal{A}_n, \mathcal{A}_n^*)
$$

$$
/ \delta^1(CC^1(\mathcal{A}_n, \mathcal{A}_n^*)) . \blacksquare
$$

References:

- **[1]** H. Dales, *Banach algebras and automatic continuity*, London Math. Soc. Monographs, Volume **24**, Clarendon press, Oxford, 2000.
	- **[2]** H. Dales and J. Duncan, *Second order cohomology groups of some seigroup algebras*, Banach Algebras ,97, Proceedings, International Conference on Banach agebras, **13** (1998), 101-117.
- **[3]** F. Gourdeau, A. Pourabbas, and M. White, *Simplicial cohomology of some semigroup algebras*, Candian Mathematical Bulletin, **50** (2007), 56-70.
- **[4]** H. Ghlaio and C. Read, *Irregular abelian semigroups with weakly amenable semigroup algebra*, Semigroup Forum, **82** (2011), 367-383.
- **[5]** A. Helemskii, Banach *cyclic cohomology and the connes-Tzygan exact sequence*, J. London Math. Society, **46** (1992), 449- 462.

زمر الكوهومولوجي وزمر الكوهومولوجي الدائرية من الرتبة الثانية لبعض الجبور التبديلية لشبه زمرة

حسين محمد غليو قسم الرياضيات - كلية العلوم - جامعة مصراتة H.Ghlaio[@sci.misuratau.edu.ly](mailto:H.Ghlaio@sci.misuratau.edu.ly)

المخلص

في هذه الورقة ، سنعيد صياغة شكل زمر الكوهومولوجي وزمر الكوهومولوجي الدائرية من الرتبة الثانية لبعض الجبور التبديلية لشبه زمرة معينة.

الكلمات المفتاحية: شبه زمرة ، زمر الكوهومولوجي وزمر الكوهومولوجي الدائرية ، جبور شبه الزمرة.